Re-engineering Legacy Mission Scientific Software

Charles D. Norton' and Viktor K. Decyk'?

- !Jet Propulsion Laboratory
‘California Institute of Technology
MS 168-522, 4800 Oak Grove Drive, Pasadena, CA 91109-8099

University of California at Los Angeles
Department of Physics and Astronomy
Los Angeles, CA 90095-1547

Contact Author: Charles.D.Norton@jpl.nasa.gov

JPL missions are constantly evolving, increasing the demands imposed on critical software
systems and applications. This ambition requires more modern, flexible, reusable, and
extensible component-based software that does not abandon the production applications
required for success. TS o
Legacy software has great value s1nce it is generally well debugged, produces results that are
trusted, and is actively meeting. end -user goals. The amount.of hidden expert knowledge
embedded in such software can be significant making its preservation important.
Nevertheless, legacy software has-limitations. It can be difficult to extend, modify, and it
does not support collaborative’development very well. This can impede the ability to meet
new and expanded mission goals as timelines and budgets become tighter. One approach to
this problem is to rewrite the software from scratch, but this may introduce more serious
costs. In particular, developing new verification and validation tests can be expensive. Also,
ensuring that the legacy code was faithfully rewritten; regardless of the programming
language applied, cannot always;be; guaranteed. g

Generally, if the functionality of the legacy software is sound 1t can be wrapped in a modern
interface where the original code is mostly unmodified. The idea of wrapping code means
that the original legacy software is preserved while a new layer. of software is introduced to
separate the old software from the:new software. The wrapper provides the best means of
retaining the functionality of the legacy software investment while providing a more flexible
context from which new software based on modern concepts,:can be introduced.

There are many benefits to th1s approach

1. Software remains in productive use while applications are modernized.

2. Avoids costly and potentially harmful software rewrites:.

3. Promotes collaborative development while resolving organization problems exhibited
in older codes.

4. Re-engineering occurs more quickly than rewriting, while preserving verification and
validation tests, especially when the original programmers are involved.

5. 0Old bugs are uncovered:« . ;.

We have developed a step-by- step process that allows software to be modernized, while also
improving its quality. The application remains in productive use during the entire process.
As much as possible, we do not modify the original subroutines, but rather incorporate the
modern features in interface:(wrapper) libraries. Our methodology is based on Fortran 90/95,

SOt



because it has the modern features we desire, while still maintaining backward compatibility.
We make use of Fortran 90 language features such as modules, derived types, and dynamic
array objects. Embedding the older code inside the interface libraries encapsulates the
implementation details of the legacy code, while adding dynamic features and additional
safety checks. This also enables multiple authors to work on pieces of the code without
interfering with one another and, better reflects the problem domain. The new code can
evolve toward an object-oriented. design, if that is desired. .Once the new superstructure
works correctly, there is always the option of replacing individual pieces of the legacy code.

We will describe how our methodology has been successfully applied to the Modeling and
Analysis for Controlled Optical Systems (MACOS) software important to NASA’s Next
Generation Space Telescope Project. This software, developed by the Optical Systems
Modeling Group at JPL, provides powerful optical analysis tools and a unique capability for
system-level design and analysis; tasks. The software has.been very useful for numerous
projects, including diagnosis of the Hubble Space Telescope..:...

MACOS is written primarily in Fortran 77 and it interoperates with Matlab, PGPlot, and
FFTw. There is also a subroutine library called SMACOS based on MACOS. Previous efforts
to rewrite the software completely in C++ (to meet new. objectives) were abandoned
primarily because the new code:did-not perform as desired, and the designers are more fluent
in Fortran. The objectives:ofi'the designers were to :achieve Fortran 90/95 standard
compliance, dynamic memory support, and to identify and correct subtle bugs during the
process. It was important that the software remain in use during this effort.

In the presentation our methodology will be described and:the software engineering issues.
involved in modernizing MACOS will be presented. We will also provide statistics on the re-
engineering effort and describe.-how software tools could.help in partial automation of this
work. s




